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Introduction 
 
 The primary runoff generation zones of the Mississippi, Colorado, Columbia, 
Saskatchewan and Mackenzie drainages lie in the Western Cordillera and 40-90% of this 
runoff is generated by snowmelt.  The reduction of shortwave reflectance (from 90% to 
10%) and the thawing of frozen ground during ablation of the seasonal snowcover are 
significant to global climate and weather patterns.  Many investigators have shown that 
basin-scale variability in snow deposition and melt is strongly influenced by the scale of 
variation in topography and vegetation and that this scale is usually 10s to 100s of meters, 
and, from the hydrologic modeling perspective, always sub-grid or sub-catchment.  This 
snowcover variability is highly scale dependent and not well represented in regional and 
continental-scale models.  An improved understanding of sub-grid variability will assist 
in assimilating remote sensing information to model operations, and assist in 
parameterizing basin-scale variability in regional and global scale models. 
 The processes controlling the rates and magnitude of snow deposition and 
ablation over complex topography and in and under vegetation canopies remains one of 
the greatest uncertainties in the operation of land surface schemes and hydrological 
models over mountainous regions.  For instance, very few hydrological or land surface 
models distinguish between snow intercepted in forest canopies, and the surface 
snowpack sheltered under forest canopies.  No climate or water model includes the 
effects of exposed shrubs in collecting wind-blown snow in the alpine zone or the 
development of large drifts in topographically sheltered areas; these effects transform 
shortwave and longwave radiative exchange above the snowpack and moderate turbulent 
exchange between the atmosphere and underlying snowpack.  Land surface schemes have 



at best an ad hoc representation of snow cover development and depletion that does not 
well represent wind redistribution of snow or actual aerial albedo decay during melt and 
results in significant errors in surface energy balance calculations.  Complex mountain 
terrain includes combined effects due to slope, aspect, terrain shelter, and vegetation 
structure that largely control both snow redistribution and drifting during the 
development of the snowcover, and variable patterns of snowcover energetics during 
melt.  These effects are either poorly described or ignored in regional and global scale 
climate and hydrological models. 
 
Project Goals 
 
 The proposed project will facilitate the identification of how the predictive 
accuracy of mountain snowcover representations in meso-scale models can be improved.  
Specifically, this project will investigate how snowcover distribution and energy balance 
terms differ with terrain and canopy structure, and with altitude and latitude.  This 
information will be used to identify how parameterizations of both the development and 
melting of the seasonal snowcover can be applied at different spatial scales in 
heterogeneous landscapes.  The minimum complexity required to capture the essential 
features of snow deposition and ablation over a complex, vegetated landscape will be 
identified. 
 
Methods 
 
 The research objectives will be accomplished through complementary 
measurement and modeling programs.  Field measurements will take place in three 
world-class experimental basins: Wolf Creek Research Basin (WCRB) in the Yukon 
Territory (Canada), the Reynolds Creek Experimental Watershed (RCEW) in Idaho, and 
the Fraser Experimental Forest in Colorado (Fraser).  These sites form a continental-scale 
transect that is representative of northern cordilleran mountains, semi-arid mountainous 
rangelands, and high-elevation Rocky mountain regions that comprise the headwaters of 
western North American river systems.  Specific variables that will be measured at all 
sites include snow depth, snow water equivalent, total solar radiation, diffuse solar 
radiation, thermal radiation, air and soil temperature, wind speed and direction, and 
relative humidity.  Spatially intensive manual sampling of snow and vegetation properties 
will also be coordinated and completed at all three sites during a series of focused field 
campaigns. 
 Process modeling will be done at point, small catchment, and basin scales at all 
three experimental areas.  Fine-scale model results will be used to evaluate and verify 
upscaled model results, and to develop strategies for spatial aggregation.  At the 
catchment scale (0.25 to 25 km2) selected applications of detailed point models will be 
used to evaluate and validate grid-based model applications.  Catchment scale modeling 
will be conducted using a similar suite of process models, but will be forced with 
generalized canopy, soil, and meteorological characteristics.  Basin scale (25 to 2500 
km2) simulations will be limited to areas over which the grid-based catchment scale 
models can be applied to evaluate the effectiveness of using more aggregate modeling 
approaches.  Spatial and temporal interaction of fine-scale processes will be modeled 



through process algorithms developed from the point and small scale modeling efforts, 
and evaluated against diagnostic observations. 
 
Results and Accomplishments 
 
 This report covers the project activity accomplished during year 2.  The activities 
during year two were dominated by focused field campaigns at WCRB and RCEW.  
  

A field experiment was conducted at the Wolf Creek Research Basin, Whitehorse, 
Yukon Territory from March to June 2004.  The experiment was to measure the spatial 
variability of snowmelt energy fluxes over montane shrub tundra in a high latitude site, 
and the physical controls on the fluxes and their variability over complex terrain.  The 
experiment levered substantial direct and indirect financial contributions from the UK 
Natural Environment Research Council, the Canada Research Chair programme, the 
Canadian Foundation for Innovation, the Canadian Foundation for Climate and 
Atmospheric Sciences, the Province of Saskatchewan Science Innovation Fund and the 
Strategic Research Investment Fund of the Welsh Assembly Government.  The 
experiment focussed firstly on the energy and mass balance of shrub tundra of various 
canopy heights by measuring latent and sensible heat fluxes above canopy and long and 
short wave radiation both above and below canopy.  Other measurements included wind 
speed, radiant surface temperature, air temperature, humidity, snow depth and density.  
The experiment focussed secondly on the variability of snow ablation and associated 
snow accumulation and melt energetics through infrared imagery of complex terrain, 
gridded surveys of snow water equivalent, specialised irradiance observations, helicopter-
based images of snow covered area and vegetation-induced shadows, and helicopter-
based vertical gradients of air temperature and humidity.  To conduct these measurements 
a field tent camp was established in a remote section of the Yukon and personnel were 
supported there for their scientific studies.  Data were retrieved and archived and the 
camp was removed and the site cleaned after use.  This completes the Wolf Creek 
observational stage of this study. 

At RCEW, the field campaigns focused on measurements in three vegetation 
types:  aspen, conifer (dominated by fir), and big mountain sagebrush.  Detailed sub-
canopy solar and thermal radiation measurements in the aspen grove, conifer stand, and 
big mountain sage site were completed at several times throughout the snow season.  
Radiation was measured at both random locations within each vegetation type and in 
cardinal directions from a particular tree or shrub.  Detailed snow depth and density 
transects in the different vegetation types were also completed.  Infrared pictures were 
taken in the different vegetation types in order to better understand temperature variation 
between snowpack and vegetation both spatially and temporally.  Detailed vegetation 
data was collected in the sheltered aspen grove and coniferous stands to better understand 
the sub-canopy solar and thermal radiation measurements taken at these sites.  Tree trunk 
surface and internal temperatures were measured in both the aspen and conifer stands 
using several thermocouples.   Snowdepth and density were measured over the entire 
basin at several times throughout the snow season in order to track accumulation and for 
modeling purposes.   



Intensive automated data collection continued at RCEW during year 2 including 
basic micrometerologic data and eddy covariance data.  The additional 
micrometerological stations installed during year 1 were closely monitored and, in some 
cases, modified to ensure data quality during year 2.  A 15-m tower consisting of three 
measurement levels (3-m, 9-m, and 15-m) was established within the aspen grove to 
characterize vertical variation of wind speed and direction, air temperature and humidity, 
and canopy surface temperature through the aspen canopy.  Solar radiation and 
snowdepth are also measured at the tower site.  Two eddy covariance (EC) systems were 
established during year 2.  One is located in an aspen grove and the second is in an open 
site.  The sites consist of a 3-D sonic anemometer, an infrared gas analyzer, a net 
radiometer, and an air temperature and humidity probe.  The EC instrumentation collects 
10 Hz data in order to allow one to determine latent heat flux, sensible heat flux, and 
carbon flux after data corrections.   

A PhD student, funded through this project, has completed one year of course 
work and has begun work on her dissertation.  The topic of her dissertation research 
includes investigating eddy covariance measurements of sensible and latent heat flux 
over snow at RCEW, how these measurements vary with vegetation type, how these 
measurements compare to modeled values, and how these measurements compare to the 
EC measurements taken at Fraser and WCRB.   
 
Variability of snowmelt in high latitude mountain environments 
The energetics and mass balance of snowpacks in the pre-melt and melt period were 
examined for 10 years in a high latitude mountain catchment: Wolf Creek Research 
Basin, Yukon Territory, Canada.  Pre-melt snow accumulation was strongly depleted by 
intercepted snow sublimation in the forests and blowing snow in the alpine tundra but not 
significantly affected by the small elevational gradients in snowfall.  As a result the 
maximum pre-melt SWE was found in the mid-elevation shrub tundra, which was 
roughly double that of the alpine tundra or forests.  Elevation had a strong effect on the 
initiation of melt with the forest melt starting on average 16 days before the shrub tundra 
and 19 days before the sparse tundra.  Mean melt rates showed a maximum in middle 
elevations and increased from 860 kJ/day in the forest to 1460 kJ/day in the alpine tundra 
and 2730 kJ/day in the shrub tundra.   The forest canopy reduced melt while the shrub 
canopy enhanced it relative to the sparsely vegetated alpine tundra.  Duration of melt was 
similar in the forest and shrub tundra at 20 days while the alpine tundra was shorter at 13 
days; the differences due to differing snow accumulation and melt rates.  The greatest 
year to year variability in the timing and rate of melt compared to the other sites was 
found in the shrub tundra, where the influence of shrub canopy on snowmelt energetics 
depended on snow depth and insolation.  Differences in melt rate between alpine and 
shrub tundra were reduced in periods with high snow accumulation or extensive cloudy 
periods.   The results show that in high latitude mountain catchments snowmelt rates are 
strongly influenced by both elevation and vegetation but year-to-year variations in 
weather substantially alter the effect of these factors. 
 



Role of Shrub Tundra in Mountain Snowmelt Generation 
Shrub tundra behaves in an intermediate manner between that of a grass and an open 
forest canopy with respect to its influence on snowmelt.  As such it can accelerate 
snowmelt depending on the relative states of exposed shrub canopy and snow.  Three 
seasons of observations using radiometers, eddy covariance and snow mass changes were 
made of arctic shrub tundra of varying canopy height and density.  The major findings 
are: 
 

i) snow accumulation in the shrubs is higher than in open tundra due to retention 
of snow by shorter shrubs and redistribution of snow to taller shrubs in 
windswept sites, 

ii) medium to tall shrubs that can be buried by winter snow accumulation, ‘spring 
up’ as snow particle bonds fail due to weakening from wet snow 
metamorphism – this rapid emergence of vegetation completely changes the 
surface albedo and thermal and aerodynamic properties of the surface,  

iii) the albedo of exposed shrub over snow is substantially lower over dense 
shrubs than open snowfields – in this sense the shrubs behave as a deciduous 
forest canopy. 

iv) net radiation over shrubs is larger and more often positive than that over open 
snowfields due to lower albedo, however net radiation to snow under shrubs is 
much larger and more positive than that above the shrubs due to the 
downward net longwave flux direction. 

v) the latent heat flux from snow under shrubs is not substantially different from 
that of open snowfields, 

vi) sensible heat flux is controlled by the presence of ‘warm’ shrubs, particularly 
on clear days.  Both upward sensible heat flow from shrub to atmosphere and 
a downward component that contributes to snowmelt are observed under 
strong solar radiation. 

vii) snowmelt rates are generally enhanced under shrub canopies in comparison to 
open snowfields. 

 
These results suggest that shrub tundra should be treated as a unique land surface in 
atmospheric and hydrological models. 
 
Radiation Observations and Modeling - Shrubs 
Snowmelt energy exchange under shrub canopies is strongly influenced by the 
transmission of short wave radiation through the canopy and the reflectance from snow 
under the canopy.  Alder shrub tundra covering a valley bottom in the Wolf Creek 
Research Basin, Yukon Territory, Canada was studied.  Shrub heights were 
approximately 2-m and the canopy was discontinuous and highly heterogeneous.  
Analysis of aerial photographs covering a 900 m2 area indicated shrub and gap fractions 
of 0.4 and 0.6 respectively. Transmissivity observations were made using an array of 
upward looking pyranometers, 10 below canopy and one above canopy.  These showed 
substantial diurnal and spatial variations, with only a small dependence on solar angle. 
Arially-averaged transmissivity through the shrub canopy ranged between 0.05 and 0.95, 



with a mean of 0.43, increasing under overcast conditions.  Radiative transfer was 
modeled by segregating the surface into three dynamic fractions: shrub, gap and shaded 
gap. The shaded gap fraction was derived by simulating the shadows generated by the 
shrubs, for which measured distributions of shrub height and width were made.  
Transmissivity through shrub canopy was calculated for both shrub and shaded gap 
fractions. Net shortwave calculations were completed by applying observed albedo 
values to each of the three fractions. The resulting arial transmissivity and albedo, are 
between those expected for pure snow and pure shrub surfaces and a function of both PAI 
and shrub canopy gap structure. 
 
Radiation Observation and Modeling – Longwave and Shortwave Radiation in Mountain 
Environments 
At high latitudes, net longwave radiation provides an important contribution of radiant 
energy to snow due to the low solar elevation and the high albedo of snow.  The effect is 
magnified in mountains due to shading and longwave emissions from the complex 
topography. This study examines incoming long-wave radiation to snow surfaces in the 
mountainous, sub-arctic Wolf Creek Research Basin, Yukon Territory, Canada during the 
springs of 2002 and 2004. Incoming longwave radiation was estimated from standard 
meteorological measurements and topography by segregating radiation sources amongst 
clear-sky, clouds and surrounding terrain.  A sensitivity study was conducted to detect the 
atmospheric and topographic conditions under which emission from adjacent terrain 
significantly increases the longwave irradiance in complex topography. The total 
incoming longwave radiation to a surface was found to be much more sensitive to sky 
view factor, than to the temperature of the emitting terrain surfaces. A variation of 
Brutsaert’s equation was found to effectively simulate incoming longwave radiation 
under clear-sky conditions for hourly time steps using temperature and humidity. 
Longwave emission from clouds, which raise longwave emissions above that from clear 
skies by 16% on average, were best-estimated using only daily atmospheric solar 
transmissivity and hourly relative humidity. An independent test of the estimation 
procedure was conducted using observations from near Saskatoon, Saskatchewan, 
Canada, and indicated that the calculations are robust in late winter and spring conditions. 
 Shortwave radiation varies strongly with slope, aspect and shading by remote 
topography in mountain environments, and this has profound influences on surface 
energy and water balances. A parametrization has been developed for the average and 
variance of incoming shortwave radiation over mesoscale regions of complex 
topography. This has been evaluated in comparison with high-resolution distributed 
simulations for Wolf Creek (Yukon Territory), Reynolds Creek (Idaho) and Maroon 
Creek (Colorado, chosen as an area of particularly steep and anisotropic topography). 
Topographic shading has also been investigated for mountainous regions in North Wales 
and the French Alps. 
 
Snow Surface Temperature Observation and Modeling 
The longwave radiant temperature of a snowpack is an important variable in energy 
balance calculations of snowpack energetics and as a lower boundary condition for the 
atmosphere over snow.  It forms the basis for calculations of longwave emission from the 



snowcover and a lower reference condition for calculations of sensible and latent heat 
flux.  These calculations govern the coupled energy and mass balance equations that 
determine snow dynamics, particularly the energy state of snow, surface sublimation and 
snowmelt.  Recent observations of snow surface temperature with longwave radiometers 
suggest that they remain significantly reduced from that of either the snowpack or air, in 
pre-melt and melting conditions.  To describe these situations, a new, simple radiant 
temperature calculation for snowpacks is developed assuming thermodynamic 
equilibrium amongst net longwave, sensible heat and latent heat in a thin surface layer of 
the snowpack.  Net shortwave, conductive fluxes and internal energy change are ignored.  
The model shows great skill in simulating the surface temperature of a grassland 
snowpack under ventilated conditions from -37 to +5 C.  It has been further tested at 
moderate (Canadian Rockies) and extreme (Bolivian Andes) conditions and found, even 
in such extreme environments to provide good estimates under ventilated, stable 
conditions.  
 
Turbulent Flux Observation and Modeling – high latitude tundra  
There is increasing evidence that snowmelt rates are substantially different between shrub 
tundra and poorly vegetated tundra sites. Three calculation schemes were used to find the 
simplest model structures that could, without calibration, calculate snowmelt and surface 
energetics for open and shrub tundra.  At a dwarf birch shrub site, the short canopy was 
buried completely by snow, suggesting that a relatively simple, continuous snowcover 
single source scheme could be appropriate. Such a scheme provided good simulations of 
net radiation, sensible and latent heat fluxes, and ultimately snow depth (R2 = 0.99). At an 
alder shrub site, the tall discontinuous shrub canopy required a more complex model 
structure. A single source scheme using an aerially-weighted albedo from snow and tall 
shrub cover melted snow faster than was observed.  A more complex dual source scheme 
with explicit representation of both shrub canopy and snowcover fractions reduced this 
error by one-third. However, net radiation at the snow surface was overestimated because 
radiative transfer through the tall shrub canopy was underestimated, and current work 
(see above) seeks to improve the calculation of this transfer. Turbulent transfer was well 
estimated by the dual source scheme and differed considerably from that for short shrubs 
or open snowcovers. 
 
Investigators Meetings 

The primary investigators and associated researchers met in March during one of 
the intensive field campaigns, at the spring AGU meeting in Montreal and again in 
December at the American Geophysical Union Meeting to coordinate research efforts and 
future field campaigns.   
 
Future Work 
 
 Unfortunately the 2004-2005 snow season has yielded little snowpack and warm 
temperatures.  In some instances snowpack is at levels less than 50% of normal.  This has 
forced the research team to abandon intensive field campaigns at RCEW though 2-3 
depth and density surveys will be conducted.  Automated micrometeorologic data and 



eddy covariance data continues to be collected and analyzed.  Data analysis and model 
improvements from data collected at WCRB, Fraser and RCEW during year 1 and year 2 
will continue.  Any future field campaigns will be focused on issues that arise from data 
analysis. 
 A technique for estimating the variability of shortwave radiation under forest 
canopies from hemispherical photography has been developed and is being evaluated in 
comparison with observations from radiometer arrays.  Work has begun on developing a 
statistical parametrization of the radiative environment on forest floors (including 
forested slopes) using data from Lidar and aerial photography. 
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